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Stochastic rotation dynamics �SRD� is a relatively recent technique, closely related to lattice
Boltzmann, for capturing hydrodynamic fluid flow at the mesoscale. The SRD method is based on
simple constituent fluid particle interactions and dynamics. Here we parametrize the SRD fluid to
provide a one to one match in the shear viscosity of a Lennard-Jones fluid and present viscosity
measurements for a range of such parameters. We demonstrate how to apply the Müller-Plathe
reverse perturbation method for determining the shear viscosity of the SRD fluid and discuss how
finite system size and momentum exchange rates effect the measured viscosity. The implementation
and performance of SRD in a parallel molecular dynamics code is also described. © 2010 American
Institute of Physics. �doi:10.1063/1.3419070�

I. INTRODUCTION

Recent interest in nanoscale modeling and simulation of
complex fluids led to advances in a number of mesoscale
techniques. These techniques are particularly applicable for
modeling suspensions in which there are large particles sus-
pended in a background solvent. Because of the disparity in
size between the particles and solvent, there can be a clear
separation of time and length scales in the motion of the
solvent and that of the particles. This allows one to coarse
grain the solvent, making simulations of colloidal suspen-
sions tractable. However, in so doing one must be careful not
to ignore long range hydrodynamic interactions such as in
simple Brownian dynamics methods. One way to include
hydrodynamic interactions is to assume that the solvent can
be modeled by the traditional Navier–Stokes equations,
which can be then solved by finite element techniques. How-
ever this approach ignores relevant nanoscale phenomena in
the fluid such as thermal fluctuations and the discrete nature
of the solvent, which can become particularly important
when the particles are not much larger than the solvent, as in
the case of nanoparticle suspensions. Techniques that capture
hydrodynamic effects at a scale somewhere between the full
atomistic detail and the macroscale of the Navier–Stokes
equations provide a valuable tool for modeling a range of
interesting systems. While some have sought to bridge this
gap by combining Brownian dynamics with Stokesian
dynamics,1 or adding Brownian-type dynamics to lattice-
Boltzmann methods,2 others have developed techniques that
seek to directly coarse-grain the solvent dynamics to account
for mesoscale behavior, e.g. dissipative particle dynamics
�DPD�.3

A relatively recent technique, closely related to Lattice

Boltzmann, for capturing hydrodynamics at the mesoscale is
stochastic rotation dynamics �SRD�.4 This technique is based
on simple fluid-particle interactions and dynamics. The fluid
particles are considered massive, ideal, point particles which
do not interact with each other in a pairwise sense, but which
interact with nanoparticles through a “coarse-grained” colli-
sion operator in such a way as to conserve energy and mo-
mentum and produce fluctuating hydrodynamic behavior.
This method has been used to model colloidal suspensions,5,6

including clustering and sedimentation7–12 and shear
flow.13–16 Since the SRD particles are ideal point particles,
unphysical depletion forces can be controlled11 compared to
those introduced when modeling colloidal suspensions as oc-
curring with DPD and related models where the coarse
grained solvent occupies a large excluded volume. For a re-
cent review of the SRD method see Gompper et al.17 and
Kapral.18

While others investigated the transport coefficients for
SRD to verify theoretical predictions,19–25 little effort has
been made to map an SRD fluid to a “real” solvent. In addi-
tion, in many previous SRD simulations with suspended par-
ticles, there has been a “telescoping” of time scales.9,11,17

This is possible due to the wide spread in time scales be-
tween the fluid and the particles. Thus the simulated system
is only “dynamically similar” to the physical system in the
sense that key dimensionless numbers �e.g., Peclet, Rey-
nolds, Schmidt, Knudsen Numbers, etc.� are kept equivalent
or within an “appropriate” range. However for modeling the
flow of a pure fluid or when the suspended particles are
comparable in size to that of the solvent, for example in the
case of nanoparticles or for a polymer whose monomers are
on the same size as that of the solvent, one can map the shear
viscosity of the SRD fluid to that of real fluids. It is possible
to avoid the “telescoping” of time scales and chose SRD
parameters so that the shear viscosity � of the SRD fluid isa�Electronic mail: matt@hac.utah.edu.
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exactly equal to that of the solvent. In this way one can
evaluate the SRD method directly as a numerical technique
for solving the equations of fluctuating hydrodynamics. Here
we achieve both of these conditions by parametrizing the
SRD fluid relative to a pure Lennard-Jones �LJ� fluid. Simi-
lar mappings can be achieved for other solvents such as wa-
ter. We focus on � because it is the viscosity of the solvent
that is the relevant parameter for colloidal suspension trans-
port, e.g., � sets the scale for colloidal diffusion as can be
seen from the Stokes–Einstein relation for the diffusion con-
stant D=kBT / �6��R� in the dilute limit, where R is the ra-
dius of the colloidal particle.

To measure the shear viscosity of the SRD fluid we em-
ployed the Müller-Plathe �MP� reverse perturbation
method.26 The MP method induces a shear profile in the fluid
through an exchange of particle momentum. The shear vis-
cosity is related to this velocity gradient through the imposed
momentum transfer. Since the momentum flux is known, the
viscosity is found by simply measuring the induced velocity
profile. The MP method is straightforward to implement and
has the added advantage of conserving both energy and lin-
ear momentum, alleviating the need for thermostating. The
MP method has been applied to measure the shear viscosity
of simple fluids,26 diblock copolymers,27 nanoparticle
suspensions,28 and ionic liquids,29 though it has not been
applied to SRD fluids. Given the unique properties of the
SRD fluid—nonuniform momentum flux within an SRD bin
for example—use of the MP method with an SRD fluid re-
quires special consideration, which we discuss.

In the next section we review briefly the basics of the
SRD method. We also describe the implementation of the
MP reverse perturbation method for an SRD fluid. In Sec. III,
we discuss how to choose SRD parameters so that the SRD
properties match those of a LJ fluid and present results for
the viscosity for five sets of SRD parameters. The effect of
varying the MP exchange rate and particle velocity on the
momentum and resulting viscosity within the SRD method
are investigated. Finite size effects on the viscosity are also
discussed. In Sec. IV, we describe a parallel implementation
of SRD and compare its computational requirements to a LJ
fluid.

II. STOCHASTIC ROTATION DYNAMICS: METHODS
AND IMPLEMENTATION

SRD �Ref. 4� is a member of a class of techniques re-
ferred to as multiparticle collision dynamics,17 which are off-
lattice, particle-based simulation techniques that attempt to
efficiently resolve important “mesoscale” phenomena, such
as fluctuating hydrodynamics �mass and momentum conser-
vation� at the cost of losing detailed microscopic informa-
tion. The SRD algorithm consists of two steps: �i� particle
streaming and �ii� particle velocity update. These are de-
scribed in the following subsection. Additionally, a method
for shearing SRD solvents is described.

A. The basic algorithm: Equilibrium

Consider a system of ideal, point particles of mass mSRD

which are sorted into bins arranged in a regular cubic lattice

of size �x. Initially, the simulation domain is seeded with
these particles at uniformly random locations ri and with
velocities vi also drawn from a uniform distribution between
�−vmax,vmax�. Since SRD is a microcononical-type method
the total initial kinetic energy will determine the temperature,
kBT �i.e., the width of the Maxwell distribution, �kBT /mSRD�
after relaxation to equilibrium. Alternatively, one can draw
the initial velocities from a Maxwell distribution with the
desired temperature.

SRD involves alternating particle streaming and velocity
update steps. During the streaming step, the ith SRD parti-
cle’s position at time n+1 is calculated via the simple for-
ward Euler scheme

ri
n+1 = ri

n + vi
n�t , �1�

where �t is the SRD time step. Following this advection of
particle positions the velocity update is performed. SRD gets
its name from the multiparticle collisional model embodied
by the rotation matrix R���ri

n+1�� in the velocity update Eq.
�2�.

vi
n+1 = vi

n + R���ri
n+1���vi

n − u���ri
n+1��� , �2�

where u�� , t�=�k��vk /N�,t is the average velocity of bin �,
and N�,t is the total number of SRD particles in the bin at
time t. All particles i located in bin ��ri

n+1� at time level n
+1 have the fluctuating part of their velocities rotated about
a randomly chosen direction an amount �� with probability
1/2. In the current implementation, the value of � is set to
�=� /2; although a larger value can be beneficial.30 In addi-
tion, here the random directions are specified to be one of the
three coordinate axes chosen with probability 1/3. This infor-
mation is contained in the set of matrices R to be drawn
from.

At equilibrium the SRD particles have a Maxwell veloc-
ity distribution from which the mean free path can be deter-
mined

� = �t�kBT/mSRD. �3�

It is known that ���x /2 results in significant loss of Gal-
ilean invariance. This can be corrected by a slight modifica-
tion to the algorithm which involves a random shift of the
SRD bins before the velocity update step and then shifting
the bins back.19,31 We also implemented this algorithm and
tested our results both with and without the random shift. For
the mapping to Lennard-Jones fluids as studied here the ma-
jority of results are for parameter sets which satisfy �
	�x /2. Additional upper bounds on � may be imposed by
other length scales in the problem �e.g., the size of suspended
colloids� as well as by practical considerations such as the
size of the ghost region used for interprocessor communica-
tions. Also, it should be noted that the form of the algorithm
discussed here does not conserve angular momentum. While
this is not relevant for the cases considered here it is relevant
for certain applications. The algorithm can be modified, but
at additional computational cost.17
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B. SRD model parameters

For a reference system we chose a standard Lennard-
Jones fluid since it is the most widely modeled fluid system.
The interaction between particles of mass mLJ is given by

ULJ�r� = 	4

��

r
�12

− ��

r
�6
 for r � rc

0 for r 	 rc
� , �4�

where 
 and � are the units of energy and distance. We
carried out molecular dynamics simulations for 2592 par-
ticles at temperature at T=1.0
 /kB and pressure P=0 for rc

=3.0�. The resulting density 
=0.66mLJ /�3 and kinetic vis-
cosity �=1.53�0.05�2 /�, where �=��mLJ /
�1/2.

Accordingly, transport coefficients have been worked out
for various SRD schemes using a range of approaches.19–25

For the current implementation of rotation around orthogonal
axes by a fixed amount �� /2, the kinetic viscosity �=� /
,
where 
 is the solvent density, as derived from Green–Kubo
relations21,22 is

� =
�x2

18�t
�1 −

1 − exp�− M�
M

� +
kBT�t

4
�x3�M�M + 2�
M − 1

� , �5�

where M is the average number of SRD particles per bin and

=MmSRD /�x3 is the SRD fluid density.

In addition, for �=� /2, the self-diffusion coefficient �ig-
noring enhancement of this transport coefficient due to cor-
relations in the small mean free path limit�32 can be found as
follows:

Df =
MkBT�t

2
�x3 � 3M

M − 1 + e−M − 1� . �6�

Taking the ratio of these two gives an expression for the
Schmidt number �see Ref. 30�.

Sc =
�

Df
= ��x

�
�2 �M − 1 + e−M�2

M�2M + 1 − e−M�

+
1

2
�M + 2

M − 1
� M − 1 + e−M

2M + 1 − e−M . �7�

For pure fluids Sc is significant in that it indicates the
relative importance of momentum and mass transport. Sig-
nificant differences in the dynamics of the SRD fluid can
exist depending on its value.30 For typical liquids Sc�102 or
higher, while for the LJ liquid in view here Sc�10.33

Equations �3� and �5� are used to determine the SRD
computational parameters. Given values for kBT and fluid
material parameters � and 
, an equation relating the SRD
fluid parameters can be found by solving Eq. �5� for �t in
terms of �x and M. Substituting this equation for �t into 3
gives an expression for � in terms of fluid material properties
and the SRD computational parameters �x and M. Substitut-
ing this into Eq. �7� then gives the Schmidt number as func-
tion of �x /�.

Figure 1 shows an example of this for our model
Lennard-Jones system. In Fig. 1 both � /�x and �t are plot-
ted as functions of �x /� for various values of M. Note that
as M increases � /�x and �t get smaller or bigger for a given

�x /� depending on whether one is on upper of lower part of
the curve. However, for given � /�x or �t, �x /� increases
with increasing M.

For a given rotation angle �, choosing SRD parameters
becomes a matter of specifying �x, �t, and M. It should be
noted that there are four parameters in this method. M and �
clearly have an effect on the value of Sc as can be seen in
Fig. 1. Larger values of � lead to larger collisional contribu-
tion to the viscosity and thus to larger Sc as explained by
Ripoll et al.30 Typically, the choice of M is made so as to be
as computationally efficient as possible within any con-
straints on �. For the example as shown in Fig. 1, values of
�x=2.0� �setting the SRD fluid length scale equal to twice
the Lennard-Jones length scale� and M =5 for computational
efficiency are chosen yielding a � /� slightly less than two.
These values give �t�3.5�. The reason for choosing the
larger of the two possible values for �t on the M =5 curve is
that the larger value of � /� was selected on the first graph.
This serves to make the SRD time step large compared to the
explicit atom Lennard-Jones solvent time step �t 0.005�; re-
ducing the amount of computation at the cost of accuracy in
temporal resolution. Selecting the larger time step also leads
to a small Sc in Fig. 2. Small Sc can lead to more gaslike
than liquidlike behavior; however, increasing the value of the
rotation angle as shown in Fig. 2 can increase the value of Sc
while keeping all other parameters the same.30 Finally, mSRD

can be determined from the definition of the density given 
,
M, and �x.

Plotted in Fig. 3 are � /�x and �t /� versus �x /� for
values of � and kBT scaled by 0.5 and 0.25. Notice that as
kBT and � are scaled to smaller values, the loci of available
parameters �x and �t shift to longer times and larger lengths

FIG. 1. Possible SRD parameters for modeling a Lennard-Jones fluid with
�=1.53�2 /� and 
=0.66mLJ /�3 at kBT=
 for: M =3 �green dashed�, M =5
�blue solid�, M =10 �red dotted�, and M =20 �black dotted-dashed�.
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for the same � /�x. This is useful for simulations involving
longer length and time scales using SRD and is an example
of “telescoping” or “collapsing” of time scales. For example,
if one is interested in simulating a colloidal suspension

where only the equilibrium dynamics of the colloids are of
interest, the relevant parameter is the colloid diffusion coef-
ficient Dc. In the dilute limit, according to the Stokes–
Einstein relation, Dc=kBT / �6�
�R�. Hence, one can simu-
late a “dynamically similar” system as far as the dynamics of
the colloids is concerned by keeping the ratio of kBT /� con-
stant, but reducing the individual values of each by the same
factor. Doing so allows access to the longer times and larger
length scales noted above. That is, if the colloids are large
��1000�� it is helpful to scale the viscosity and temperature
while keeping � /�x and thus Sc constant and the mean free
path within appropriate bounds �e.g., ��a /2, where a is the
radius of the colloid�. However, one must keep in mind that
changing the kinetic energy scale kBT requires adjusting the
potential energy scale accordingly �e.g., kBT /
 must be con-
stant for an LJ-type system�. Whether this is valid for general
multiparameter colloid-colloid interaction potentials remains
to be determined.

C. Nonequilibrium SRD

In previous simulations shear has been induced either by
using Lees–Edwards boundary conditions24 or by setting the
mean velocity u in the cells at the border to the shear
velocity.13,14 Here we use the MP �Ref. 26� reverse perturba-
tion method. This method is distinguished from the majority
of nonequilibrium molecular dynamics simulations, e.g., the
SLLOD algorithm,34 in that the flux of momentum is induced
rather than measured. The momentum is imposed on the sys-
tem through a series of momentum exchanges between par-
ticles within the system. Figure 4 presents a schematic of the
simulation box in relation to the important features of the
MP algorithm. The simulation box is first divided into n slabs
along one coordinate—in this example, the Z coordinate.
Two particles are then identified—one in the nth slab and the
other in the ��n /2�+1�th slab—such that their velocities, Vx,
are opposed to the desired streaming direction of the corre-
sponding slab. With this particle pair identified, the momen-
tum, px, is then exchanged between the two particles. The
entire process is repeated at a set interval to produce the
desired shear rate. This induced shear rate can be modulated
by varying the number of time steps between momentum
exchanges, the number of momentum exchanges in a given
time step, by exchanging momentum between pairs with ve-
locities less than that of the velocities most opposed to the
streaming direction, or any combination of the three.

FIG. 2. Values of Schmidt Number for various SRD parameters in modeling
a Lennard-Jones fluid with �=1.53�2 /� and 
=0.66mLJ /�3 at kBT=
 for:
M =3 �green dashed�, M =5 �blue solid�, M =10 �red dotted�, and M =20
�black dotted-dashed�.

FIG. 3. Possible SRD parameters for 
=0.66mLJ /�3, M =5 and �
=1.53�2 /�, kBT=
 �blue solid�, �=0.765�2 /�, kBT=0.5
 �red dotted�, and
�=0.3825�2 /�, kBT=0.25
 �black dotted-dotted�.

FIG. 4. Velocity profile for MP reverse perturbation method.

174106-4 Petersen et al. J. Chem. Phys. 132, 174106 �2010�

Downloaded 07 May 2010 to 134.253.26.9. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



As can be seen in Fig. 4, the induced velocity profile is
composed of two approximately linear profiles mirrored
about the middle of the first and middle slab. This velocity
profile, ��vx /�z�, can be related to the imposed momentum
transfer and fluid viscosity,

jz�px� = − �
�vx

�z
. �8�

The amount of momentum exchanged at each time step is
known exactly, and the total momentum transfer, Px, is tabu-
lated over the course of the shearing trajectory. From the
total momentum transfer, the momentum flux can be calcu-
lated,

jz�px� =
Px

2tA
, �9�

where A=LxLy, the cross sectional area, t is the length of the
trajectory, and the factor of 2 accounts for the periodicity of
the restoring momentum flow.

Since the MP algorithm conserves both total momentum
and total energy and SRD is an NVE-type method, no ther-
mostat is required. However, at high shear rates the system
may need to be initialized at a higher thermal energy since
upon shearing, the random kinetic �thermal� energy will be
converted into the streaming kinetic energy of the average
flow field. The absence of a thermostat simplifies matters
greatly. One of the more compelling advantage being that the
shear profile of the system is a response to the momentum
transfer rather than being a function of the thermostat.

III. RESULTS

All results discussed below have in view a typical low
viscosity fluid as the solvent for which SRD is to provide a
model for the multibody, long-range, unsteady, fluctuating
hydrodynamic interactions between colloids. In particular, as
noted above, the solvent is modeled as a system of Lennard-
Jones particles at kBT=
. For rc=3.0�, the resulting kinetic
viscosity and density are �=1.53�2 /� and 
=0.66mLJ /�3 re-
spectively.

Several values of the SRD fluid parameters were chosen
as shown in Table I, each consistent with an LJ solvent de-
scribed above. The majority of results in the following are
for the first row of parameters for which the number density
of the LJ and SRD fluids are equivalent. Also shown in the
last two columns are the value of the pressure from the ideal
gas equation of state and the value of the speed of sound cs

for the SRD parameters listed. Note that from the SRD equa-

tion of state the pressure in the SRD fluid can be large rela-
tive to the explicit atom LJ solvent nominal pressure �
�0.1m /��2� in comparable simulations.35

Assuming that the mass density of the SRD fluid equal
that of the LJ system gives �x= �MmSRD /
LJ�1/3. This serves
to illustrate the freedom one has in choosing SRD fluid pa-
rameters that are consistent with the desired LJ material pa-
rameters. For mSRD=mLJ=�=1.0 and 
LJ=0.66, any �x
= �M /0.66�1/3 is possible suggesting that there is no “natural”
length scale in an SRD fluid such as the size of a constituent
LJ atom. However, for colloidal suspensions, the radius a of
the colloid introduces a nature length scale such that �x
�a. Values of M used in the following are shown in Table I.
The majority of results are for M =5.28 and �x=2.0. Given
these, �t can be found and satisfaction of constraints on Sc
can be verified if required �cf. Fig. 1�. Note that for the
present case of comparing to an LJ solvent no scaling of the
viscosity or temperature is required since all the SRD param-
eters are within reasonable ranges. This is due to the rela-
tively small size of the SRD bins, e.g., �x��. In general,
exactly matching solvent properties can be computationally
expensive especially when larger length and time scales are
required such as for simulating large colloidal particles.11

In the present case of one-to-one matching between a
LJ-type solvent and an SRD fluid, the key physical values of
the LJ-fluid can be met without “telescoping” the time
scales. That is, we simulate the exact density, kinematic vis-
cosity, and temperature of the LJ-fluid without approxima-
tion. To this point we are modeling the correct form of the
Navier–Stokes equations �i.e., fluctuation, nonsteady, low
Reynolds number, Newtonian flow�. If the exact number
density and system size are simulated, the SRD simulations
contain the same number of SRD particles as an LJ solvent
contains LJ atoms. To obtain the same mass density for the
SRD and LJ systems, we simply set the mass of the SRD
particle to be the same as a LJ atom. Since the SRD particles
have an ideal gas equation of state, the speed of sound in the
fluid �cs=��5 /3��kBT /
 f��M /�x3�� and the Mach number of
the SRD system �Ma=vs /cf� are not that of the LJ solvent
system. This is an indication that the SRD fluid cannot cap-
ture the “correct” thermodynamics of the solvent and means
that the SRD fluid always has an artificially high compress-
ibility compared to the LJ fluid. However, again due to the
small length and time scales considered here, the values of
the speed of sound in the SRD fluid are reasonable compared
to LJ solvent values,36 which means there is no flow velocity
limitation in order to keep the Mach number low. It should
also be noted that because SRD particles are ideal the pure
SRD fluid has zero bulk viscosity. So that if the LJ fluid is

TABLE I. SRD solvent parameters used in Sec. III such that T=
 /kB, �=1.53�2 /�, and 
=0.66mLJ /�3.

Set �x��� �t��� M mSRD � /�x � �c �k Sc P�m /��2� cs�� /��

1 2.0 3.5 5.28 1.0 1.75 1.02 0.0340 0.982 0.402 0.66 1.29
2 2.0 2.5 8.8 0.6 1.61 1.00 0.0520 0.952 0.396 1.1 1.67
3 1.0 0.5 3.3 0.2 1.12 1.00 0.0519 0.951 0.515 3.3 2.89
4 2.0 0.9 26.4 0.2 1.01 0.987 0.157 0.830 0.595 3.3 2.89
5 4.0 2.8 70.4 0.6 0.904 1.01 0.207 0.803 0.447 1.1 1.67
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incompressible, the only error introduced due to artificial
compressibility in the SRD fluid is from the shear viscosity
term in the Newtonian viscous stress tensor.17

Additionally, the Schmidt number in Eq. �7�, which is a
measure of diffusive momentum transfer relative to the dif-
fusive mass transfer in the fluid, and the Knudsen number
�Kn=� f /�x, where �x defines the relevant length scale of
the fluid�, which characterizes noncontinuum effects, may be
different between the SRD and LJ fluids. While the Schmidt
number does not effect the Navier–Stokes equations as noted
for colloidal suspensions,9 it has been found to have signifi-
cant effect on the dynamics of SRD particles in pure fluid
systems.30 We will discuss this in more detail below, but it is
sufficient to note at this point that Sc�10 in an LJ fluid.33

For comparable mean free paths in SRD and LJ fluids, the
Knudsen number would also be equivalent in the two simu-
lations; however, this is not expected to be the case here. In
fact, the Knudsen number for the SRD simulations is about
an order of magnitude larger than the LJ solvent. In the cur-
rent simulations these are potentially the largest sources of
error due to the coarse graining of the LJ solvent.

Using the MP approach described in Sec. II, the shear
viscosity of the pure SRD fluid was measured for several
parameter sets �see table I�. Within the regime of linear re-
sponse a log-log plot of the induced shear rate and the im-
posed momentum transfer will fall on a line of slope 1. The
viscosity in the limit of zero shear can then be calculated
from the y-intercept of the best fit line through the points
within this linear response regime. Figure 5 compares such a
plot for a Lennard-Jones system at the above described state
point and SRD parameter set 1. Notice that with the SRD,
quite low shear rates are possible. The Lennard-Jones system
exhibited shear thinning for the highest shear rates. Newton-
ian behavior was observed at all shear rates simulated in the
SRD systems.

The manner in which the MP momentum transfer is per-
formed must account for the nonuniform kinetic and colli-
sional contributions to the momentum flux within an SRD
bin.24 One way to accommodate the nonuniform contribu-
tions is to make the MP bins the same size as the SRD bins.

The particles chosen for the momentum exchange will then
have an equal likelihood of being chosen from any point
within the SRD bin. Alternately, SRD bin shifting can be
used to effectively randomize the location of the chosen par-
ticle in relation to the SRD bin. Both methods were found to
yield equivalent results. In either case, the bins containing
particles participating in the momentum exchanges were dis-
carded in the analysis of the velocity profile.

As mentioned in Sec. II, the momentum transfer can be
modulated by varying the frequency that the momentum ex-
changes are performed, as well as choosing particles with
velocities of different magnitudes relative to the desired
streaming direction and velocity. If the SRD time step is used
as the integration time step, that is, the particles are advected
and rotated in a single operation, then the momentum ex-
change can only be performed a single time per collision/
streaming step. However, if the integration time step was
smaller than the SRD collision time step �say 0.1, a time step
appropriate for a 20� sized colloidal particle�, then signifi-
cant flexibility is gained in choosing momentum exchange
frequencies tailored to drive a desired shear rate. Using a
common time step between the various parameter sets has
the additional benefit of removing the disparate SRD time
steps as a factor in the imposed momentum transfer.

It was found that the velocity of the particles chosen for
the MP momentum exchange had a dramatic effect on the
momentum flux, and the resulting measured viscosity. Three
series of simulations were run to investigate this effect. Fig-
ure 6 contains the data for these three series, all using the
parameters of set 4 in Table I, an integration time step �t
=0.1, with a system volume of 83�3. The circles in Fig. 6
represent a series simulations where the momentum ex-
change was performed every time step between particle pairs
with successively smaller velocities, resulting in smaller im-
posed momentum transfer and induced shear rate. As the
magnitude of the velocity exchanged between two particles
is increased, the points eventually deviate from the apparent
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FIG. 5. Linear response relation between the shear rate and momentum flux
for a Lennard-Jones fluid �open symbols� and SRD fluid with parameter set
1 �closed symbols�.
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FIG. 6. Effect of the momentum exchange rate and particle velocity on the
momentum transfer and resulting viscosity—multiple exchanges per time
step of low velocity particles �square, dashed line�, varied exchange fre-
quencies of high velocity particles �triangle, dotted line�, single exchange
per time step of increasing velocity particles �circle�, and varied exchange
frequencies of high velocity particles using the smaller SRD time step �dia-
monds, solid line�.
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linear relationship exhibited by the points representing
smaller values of velocity exchanges. In order to identify if
this deviation at high shear rates is due to the magnitude of
the velocities exchanged or just the imposed momentum
transfer, two additional series of simulations were performed.
The second series �Fig. 6, triangles� exchanged particle ve-
locities which were the most opposed velocities relative to
the streaming direction, but performed the exchange at suc-
cessively lower frequency, generating lower imposed mo-
mentum transfer and concomitant shear rates. The third se-
ries �Fig. 6, squares� exchanged velocities between particle
pairs such that the velocities were within the linear regime of
the first series of simulations, but for a successively larger
number of particles within a given time step.

For large values of momentum exchange between high
velocity particles, the imposed momentum transfer deviates
from the momentum flux and the resulting shear rate. This
can be seen by comparing the series 1 curve �Fig. 6, circles�,
to the series 2 curve �Fig. 6, triangles�. For a common value
of imposed momentum transfer the resulting shear rate is
smaller for the series where pairs with the largest velocities
were chosen for the momentum exchange �series 2�, indicat-
ing a lower momentum flux. Likewise, comparing the series
3 curve �Fig. 6, squares� to the high velocity points of the
series 1 curve, a higher shear rate is exhibited for the series 3
curve �multiple exchanges of small velocities in a single time
step� for equivalent imposed momentum transfer. Apparently,
exchanges between high velocity particles, not large momen-
tum transfer, result in an anomalously low momentum flux.
For each point that deviates from the linear region—that is,
points generated by performing momentum exchanges be-
tween particles with some chosen large velocity—there is a
curve that can be created through successively less frequent
momentum exchanges between particles with that chosen
large velocity value. This curve will be linear in imposed
momentum transfer and induced shear rate. In order to avoid
calculating a spurious viscosity resulting from exchanges be-
tween particles with too-large velocities, a curve is generated
using exchanges between particles with successively smaller
velocities �as in Fig. 6, circles�. From this curve an appropri-
ately small velocity value is chosen from the linear region
and a new curve is generated by modulating the imposed
momentum transfer through multiple exchanges in a single
time step between multiple particle pairs with the chosen
velocity �as in Fig. 6, squares�. The viscosity is then taken
from the y-intercept of the best-fit line of slope 1 passing
through the points.

The viscosity of the SRD systems also exhibits finite
size effects as shown in �Fig. 7�. Each set of parameters from
Table I were simulated at a fixed density but with progres-
sively larger system size. In general, all systems manifest
viscosities lower than expected from Eq. �5� for the smallest
systems simulated. Two sets �set 4 and set 5� converged to
the expected viscosity at relatively small system sizes. These
parameters are distinguished by the comparatively larger
contribution of the collisional component of the viscosity
�see Table I�. As discussed in Sec. II, for a fixed set of SRD
parameters the larger of two possible time steps was chosen
for computational efficiency. If the smaller is used, then the

collisional contribution dominates the kinetic contribution to
the viscosity. The diamonds in Fig. 6 are for points calcu-
lated using the smaller of the two possible time steps for the
same system size and the otherwise identical SRD param-
eters of set 4. While the viscosity calculated from the simu-
lation set wherein the momentum exchange was between
particles with the most opposed velocities �Fig. 6, triangles�
overestimated the expected viscosity by 37%, the set created
using the smaller time step found the viscosity to be within
3% of the expected viscosity—with the velocity of the ex-
change particle having no discernible effect on the induced
shear rate. The smaller time step uniformly eliminated the
finite size effects for all parameter sets considered. It has
been shown30 that long time velocity correlations of an SRD
fluid exhibit anomalously fast decay. This was explained by
analogy to similar systems where the hydrodynamic modes
were truncated by the system size. The truncation of the
hydrodynamic modes is apparently a more severe restriction
for the more gaslike simulation, that is, the simulations using
the larger of the two possible time steps. While the anoma-
lous viscosity is possibly related to the MP method, it seems
unlikely given the convergence of the viscosity for a particu-
lar sized system with decreasing velocity of the exchange
pair. The smallest of these velocities being a very small per-
turbation to the fluid relative to the average particle velocity.

Small values of the collision time step significantly re-
duce the efficiency of the simulation. Depending on the ratio
of the kinetic to collisional contribution to the total viscosity
for a given set of parameters, using the larger time step might
be sufficient to model the desired viscosity for a modestly
sized system. Alternately, if a large system size is otherwise
necessary because of the number or size of embedded par-
ticles, the larger time step may be adequate given that the
system is large enough to capture the relevant hydrodynamic
modes.

IV. IMPLEMENTATION

In this section we discuss the implementation of SRD in
our parallel molecular dynamics �MD� code LAMMPS �Ref.
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FIG. 7. Effect of a finite sized simulation box on the shear viscosity for
various parameters: set 1 �diamonds�, set 2 �triangle�, set 3 �circle�, set 4
�square�, and set 5 �inverted triangle�. The viscosity values of the various
sets are bounded by the dotted lines.
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37� and present some performance results. Like many MD
codes, LAMMPS achieves improved parallel performance by
partitioning the overall simulation box into small brick-
shaped subdomains, one per processor.

A time step in MD consists of computing forces between
particles �usually via a neighbor list that stores pairs of
nearby particles�, performing time integration to update the
positions and velocities of particles using these forces, and
calculating other diagnostic or output quantities. In parallel,
each processor does this for the particles in its subdomain,
with some communication required to acquire nearby
“ghost” particles owned by neighboring processors.

SRD differs from usual MD in that SRD particles do not
interact with each other in a pairwise sense, thus neighbor
lists need not include them, nor are forces on SRD particles
computed. When a mixture simulation is performed �e.g.,
large colloidal particles in a background SRD fluid�, then
collisions between SRD and colloidal particles do impart
force to the SRD particles, which introduces some additional
issues. In this paper we are only concerned with the SRD
advection and rotation operations and how to perform them
efficiently in parallel. We do this in LAMMPS by partitioning
the overall set of particles on each processor into two groups,
SRD and non-SRD particles. Since particle attributes are
stored in lists �vectors�, this simply means the non-SRD par-
ticles are at the beginning of the list, and SRD particles at the
end. This is maintained as particles move from one proces-
sor’s geometric domain to another during the simulation and
processors add/delete particles to/from their lists. The advan-
tage of this approach is that all the normal MD operations
�neighbor list construction, pairwise force computation, time
integration� can easily exclude SRD particles, by only loop-
ing over the first portion of the list. Likewise, ghost versions
of SRD particles, owned by nearby processors, are not
needed in our implementation of the SRD algorithm and
hence are not communicated; only non-SRD particles are
ghosted. We note that these savings are critical in a perfor-
mance sense, because the ratio of SRD to non-SRD particles
can easily be 1000 to 1 or greater. In a pure SRD simulation,
no non-SRD particles exist; these operations are effectively
not even invoked.

LAMMPS allows new features to be added by writing a
“fix” �a C�� class� which includes methods �subroutines�
that are invoked at different stages of the MD time step. The
SRD model was implemented in this manner, as a single new
class. One method advects the SRD particles each time step.
A second method performs the rotation operation to collec-
tively change the velocities of SRD particles in the same
SRD bin. We discuss each in turn.

The advection operation is trivial: xnew=xold+v�tc for
each SRD particle, where x and v are its position and veloc-
ity; the velocity does not change since there are no forces.
The time step �tc requires some discussion. In a mixture
simulation there are two time scales: �tc��ts. The shorter
colloid time scale is used to compute colloid-colloid interac-
tions and advect the colloid particles. Note that even though
�tc is small in the SRD context, it is a function of the mass
and interaction strength of the large colloidal particles, and is
thus much larger than the time step that would be required to

integrate solvent-solvent interactions in, for example, a
Lennard-Jones �LJ� background fluid. �ts is the time scale on
which SRD particle velocities are rotated.

In a pure SRD simulation, these two time scales could be
collapsed into a single large time step. Each �ts, SRD par-
ticles would advect for a full step and then be binned and
their velocities rotated. However, we choose here to maintain
a separation of the two time scales, advecting SRD particles
once every �tc, and rotating their velocities once every �ts.
This is to match what we do in a mixture and because taking
very large SRD advection steps can cause problems in a
mixture, e.g. if a SRD particle moves far inside or even
passes through a colloid particle, complicating collision de-
tection and resolution. In the benchmark discussed below,
�ts=3.5 �chosen to map the SRD fluid to a LJ fluid� and
�tc=0.1 �a typical time step for colloids or nanoparticles of
size 20��. Thus SRD particles advect for a full SRD time
step in 35 shorter �tc increments.

In parallel, SRD particles can move outside a processor’s
subdomain as they advect. This is allowed in LAMMPS; par-
ticles are not moved to new processors until a reneighboring
is performed. In a mixture simulation, reneighboring would
be triggered by colloid movement and typically occurs every
few �tc steps. In a pure SRD simulation it is triggered by the
SRD rotations, i.e., every 35 steps in this benchmark.

We require SRD particles to be inside the subdomain of
the processor that owns them when the rotation operation is
done, carried out by superimposing a set of SRD bins as a
three dimensional �3d� grid across the entire simulation do-
main. For a periodic system we require there to be an integer
number of bins in each dimension. As discussed in Sec. II, if
the mean-free path � of SRD particles is less than 0.6 of the
bin size s, then the alignment of the grid relative to the simu-
lation box is shifted randomly in each dimension by an offset
of up to s in magnitude. This is done each time a rotation
operation is performed, to avoid undesirable correlations in
the rotated velocities. This means some bins will overlap the
subdomains of multiple processors, as in Fig. 8 for a two
dimensional �2d� example where the shaded bin overlaps in
both x and y. Even if bin shifting is not required ���0.6s�,
overlaps will still occur if the number of bins in any dimen-
sion is not a multiple of the number of processors in the
corresponding dimension. Note that Fig. 8 could also repre-

FIG. 8. Portion of a 2d simulation box, owned by processor 0, 1, 2, and 3.
The heavy lines represent processor boundaries; the light lines are the grid
of SRD bins. The shaded bin overlaps the subdomains owned by all four
processors.
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sent the overlap that occurs at a periodic boundary due to bin
shifting. If the dark vertical line was a periodic boundary,
then processors 0 and 1 would own subdomains at opposite x
ends of the simulation box.

To compute new velocities, each processor first loops
over its SRD particles, determines which bin each is inside,
and sums each particle’s velocity vector to the total velocity
for that bin. For overlapping bins, the partial velocity sum
and count of contributing particles are then communicated to
the other processors that share the bin. This is done effi-
ciently by precomputing the list of bins that overlap in each
dimension, namely, those on the six faces of a processor’s
subdomain. Messages are first exchanged �send and receive�
in the x direction, then in y, finally in z, with the six neigh-
bors of each processor. A bin with overlaps in more than one
dimension, such as the shaded bin in Fig. 8, is sent multiple
times. When this operation is complete, each processor
knows the total summed velocity and particle count for all
bins it either owns entirely or overlaps with. Thus it can
compute the average particle velocity in those bins and per-
form the rotation operation to adjust the velocity of all SRD
particles it owns. The latter involves choosing a random axis
to rotate around for each bin. Processors sharing a bin do this
consistently by having the lowest-index processor �processor
0 for the shaded bin in Fig. 8�, compute a random number
which is included in the data exchanged for that bin. Note
that the total amount of data communicated in this operation
is proportional to the number of overlapping bins, not to the
number of SRD particles. Hence it is a relatively cheap op-
eration, especially if there are many SRD particles per bin.

Figure 9 shows the parallel performance of our SRD
implementation for a pure SRD simulation with 4.7�106

particles and a 963 SRD grid, one of the models discussed in
Sec. III. The two time steps used were �tc=0.1 �for advec-
tion� and �ts=3.5 �for rotation�, in reduced LJ units. Ran-
domized bin shifting was used in the rotation operation. The
runs were performed on a Cray XT3 with quad-core 2.2 GHz
AMD Opteron nodes and a custom interconnect. Timing

curves are shown for running in three different modes, using
1, 2, or all 4 cores per node. For example, running on 512
processors �cores� with 2 cores/node, means 256 Opteron
nodes were used �and only half the available cores�.

The single-core timing for this SRD problem, assumed
to be 100% efficient, was 206.9 seconds for a 1050 �tc time
step run �advecting every step, rotating every 35 steps�. The
time to perform a rotation operation was about nine times
more than an advection time step. A parallel efficiency of
80% on 512 processors of the 1 core/node curve means the
simulation ran about 400 times faster than it did on one core,
i.e. in 0.54 s in this case. The vertical offsets between the
three curves are due to limited memory bandwidth on an
Opteron node when using multiple cores. Once this cost has
been paid �running on two or four processors for the two
core and four core curves�, then performance scales nicely
out to about 256 processors. The small bump in performance
in all three curves near this processor count is likely due to
particle lists fitting into cache once the particle count per
processor is small enough. Past this point, communication or
other overhead costs begin to dominate and the performance
degrades for all three curves.

The performance degradation when there are a few thou-
sand SRD particles per processor is partly because the simu-
lation is running so fast �thousands of time steps per CPU
second�. For comparison, Fig. 10 shows parallel efficiency
curves for an explicit LJ solvent simulation with the same
number and density of particles �N=4.7�106, 
�=0.66, T�

=1.0, cutoff=2.5��. Neighbor lists were now employed to
find pair interactions efficiently; the lists were rebuilt on av-
erage every 6 time steps. The additional computation re-
quired to calculate solvent-solvent interactions has two ef-
fects. There is enough computation that multiple cores per
Opteron can be used more effectively without saturating
memory bandwidth. And there is no performance degrada-
tion even at 1024 processors when there are fewer than 5000
particles per processor.

However, the explicit LJ model required 9567 s to run
for 1050 time steps on a single core, which is 46 times

FIG. 9. Parallel efficiency of an SRD simulation of 4.7�106 particles run-
ning on different numbers of processors �cores� of a Cray XT3. The three
curves are for running 1, 2, and 4 cores/node. The one-core timing was 207
s for 1050 time steps.

FIG. 10. Parallel efficiency of an explicit LJ simulation of 4.7�106 par-
ticles running on a Cray XT3, analogous to the SRD model of Fig. 9. The
one-processor timing was 9567 seconds for 1050 time steps.
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slower than the SRD model. Additionally, the SRD time step
of 0.1 �in reduced units� is 20 times larger than the standard
LJ time step of 0.005. Since these are multiplicative factors,
this means that when the SRD model is applicable, it can
enable much larger and faster simulations of pure or mixture
systems than would be possible with explicit LJ solvent.

V. CONCLUSION

The implementation of SRD for simulating mesoscale
hydrodynamics has been discussed. As a means for modeling
fluctuating hydrodynamics in colloidal suspensions, SRD is
more computationally efficient than simulations containing
atomistic �LJ� solvents. Additionally, it has been shown that
in certain approximations which “collapse” or “telescope”
time scales are not necessary. Here the SRD fluid was pa-
rametrized to model an LJ-type solvent at a given tempera-
ture and density with a known shear viscosity.

We demonstrated the novel combination of the SRD
fluid model with the MP reverse perturbation method for
measuring shear viscosity. The SRD model presented several
unique considerations when used in conjunction with the MP
method. Due to the nonuniform momentum flux of the ki-
netic and collisional components, individual MP swap bins
must either be aligned with a plane of full SRD bins, or SRD
bin shifting must be implemented. Additionally, depending
on the potential for finite size effects, the value of the veloc-
ity of the particles swapped in the MP method must be taken
into account. For small systems with a modest collisional
contribution to the viscosity the velocity of swapped par-
ticles should be chosen to achieve the correct restoring mo-
mentum flux for the imposed momentum transfer.
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